Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 83(2): 637-43, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21111185

RESUMO

Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 µg g(-1), 0.052 µg g(-1) and 0.41 µg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.


Assuntos
Cálcio/análise , Magnésio/análise , Espectrofotometria Atômica/métodos , Zinco/análise , Brasil , Calibragem , Técnicas de Química Analítica , Detergentes/farmacologia , Indústrias , Octoxinol/farmacologia , Óleos/química
2.
Talanta ; 74(5): 1378-84, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18371793

RESUMO

A new method for F AAS determination of sodium and potassium in biodiesel using water-in-oil microemulsion as sample preparation is proposed. The method was investigated for biodiesel produced from different sources, as soybean, castor and sunflower oil and animal fat and was also applied for vegetable oils. The optimized condition for microemulsion formation was 57.6% (w/w) of n-pentanol, 20% (w/w) of biodiesel or vegetable oil, 14.4% (w/w) of Triton X-100 and 8% (w/w) of water (aqueous standard of KCl or NaCl in/or diluted HNO(3)). The optimized instrumental parameters were: aspiration rate of 2 mL min(-1) and the flame composition of 0.131 of C(2)H(2)/air ratio. For comparison purpose, the determination of sodium and potassium were also carried out according to European norms (EN 14108 and EN 14109, respectively). These norms are applied for determination of sodium and potassium in fatty acid methylic ester samples and consist in the sample dilution using organic solvent and determination by F AAS. The stability of microemulsified aqueous standards and samples was investigated and it was found to be stable for at least 3 days while the organic standard diluted with xylene showed a decrease around of 15% in the analytical signal in 1h. The limits of detection were 0.1 microg g(-1) and 0.06 microg g(-1) and the obtained characteristic concentrations were 25 microg L(-1) and 28 microg L(-1) for sodium and potassium, respectively. The proposed method presented two times better limits of detection and better precision (0.4-1.0%) when compared with the dilution technique (1.5-4.5%). The accuracy of the method was evaluated through recovery tests and comparison with the results obtained by dilution technique. The recoveries ranged from 95% to 115% for biodiesel and 90% to 115% for vegetable oil samples. Comparison between the results obtained for biodiesel by both methods showed no significant differences at the 95% confidence level according to a Student's t-test. This study shows that the proposed method based on microemulsion as sample preparation can be applied as an efficient alternative for sodium and potassium determination in biodiesel samples.


Assuntos
Emulsões/química , Gorduras/química , Gasolina/análise , Óleos de Plantas/química , Potássio/análise , Sódio/análise , Espectrofotometria Atômica/métodos , Ionização de Chama , Métodos , Microquímica , Octoxinol , Reprodutibilidade dos Testes , Espectrofotometria Atômica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...